
บทบาทของการสื่อสารข้อมูลและเครือข่ายคอมพิวเตอร์
การติดต่อสื่อสารเป็นการพูดคุยหรือส่งข่าวสารกันของมนุษย์ ซึ่งอาจเป็นการแสดงออกด้วยท่าทาง
การสื่อสารข้อมูลและเครือข่ายคอมพิวเตอร์ ก่อให้เกิดประโยชน์ดังนี้
1. สะดวกในการแบ่งปันข้อมูล
ปัจจุบันมีข้อมูลจำนวนมากสามารถถูกส่งผ่านเครือข่ายการสื่อสารได้อย่างมีประสิทธิภาพและรวดเร็ว เช่น การส่งข้อมุลผ่านเครือข่ายโทรศัพท์ระบบดีเอสแอล (Digital Subscriber Line :DSL) ถ้าส่งด้วยอัตราเร็ว 2 Mbps หรือประมาณ 256 kb/s จะส่งข้อมูลจำนวน 200 หน้าได้ในเวลาน้อยกว่า 10 วินาที
2. ความถูกต้องของข้อมูล
การรับส่งข้อมูลระหว่างคอมพิวเตอร์ผ่านเครือข่ายการสื่อสารเป็นการส่งแบบดิจิทัล ซึ่งระบบการสื่อสารจะมีการตรวจสอบความถูกต้องของขั้อมูลที่ส่งและแก้ไขข้อมูลที่ผิดพลาดให้ถูกต้องได้โดยอัตโนมัติ ดังนั้นการสื่อสารข้อมุลจึงมีความเชื่อถือได้สูง
3. ความเร็วในการรับส่งข้อมูล
การใช้คอมพิวเตอร์ในการส่งข้อมูลหรือค้นหาข้อมุลจกาฐานข้อมุลขนาดใหญ่ทำได้อย่างรวดเร็ว เนื่องสัญญาณทางไฟฟ้าเดินทางด้วยความเร็วใกล้เคียงความเร็วแสง เช่น การดูภาพยนตร์ หรือรายการโทรทัศน์ผ่านทางอินเทอร์เน็ต การตรวจสอบหรือการจองที่นั่งของสายการบินสามารถทำได้ทันที
4. ประหยัดค่าใช้จ่ายในการสื่อสารข้อมูล
การรับและส่งข้อมูลผ่านเครือข่ายการสื่อสารสามารถทำได้ในราคาถูกกว่าการสื่อสารแบบอื่น เช่น การใช้งานโทรศัพท์โดยผ่านอินเทอร์เน็ตหรือที่เรียกว่า วอยซ์โอเวอร์ไอพี (Vioce over IP :VoIP) จะมีค่าใช้จ่ายต่ำกว่าการใช้งานโทรศัพท์โดยผ่านระบบโทรศัพท์พื้นฐาน หรือการใช้อีเมล์ส่งข้อมูลหรือเอกสารในรูปแบบอิเล็กทรอนิกส์จะมีค่าใช้จ่ายต่ำกว่าและรวดเร็วกว่าการส่งเอกสาร
5.สะดวกในการแบ่งปันทรัพยากร ในองค์กรณ์สามารถใช้อุปกรณ์สารสนเทศร่วมกันได้โดยไม่ต้องเสียค่าใช้จ่ายติดตั้งอุปกรณืให้กับทุกเครื่อง เช่น เครื่องพิมพ์ นอกจากนี้ยังสามารถใช้โปรแกรมและข้อมูลร่วมกันได้ โดยจัดเก็บโปแกรมและข้อมูลเหล่านั้นไว้ที่แหล่งเก็บข้อมูลที่เป็นศูนย์กลาง เช่น เครื่องบริการไฟล์ (file server) เป็นต้น
6.ความสะดวกในการประสานงาน ในองค์กรที่มีหน่วยงานย่อยหลายแห่งที่อยู่ห่างไกลกันสามารถทำงานประสานกันผ่านระบบอินเทอร์เน็ต เช่น การประชุมทางไกล และการแก้ไขเอกสารร่วมกันผ่านระบบเครือข่าย
7.ขยายบริการขององค์กร เครือข่ายคอมพิเตอร์ทำให้องค์กรสามารถกระจ่ายที่ทำการไปยังจุดต่างๆที่ต้องการให้บริการ เช่น ธนาคารมีสาขาทั่วประเทศ สามารถถอนเงินได้จากตู้เอทีเอ็มหรือฝากเงินผ่านตู้ฝากเงินสด
8.การสร้างบริการรูปแบบใหม่บนเครือข่าย การให้บริการต่างๆผ่านเครือข่ายคอมพิวเตอร์ทำให้ผู้ใช้สามารถเข้าใช้บริการได้ทุกที่ทุกเวลา เช่น การซื้อสินค้าผ่านร้านค้าออนไลน์ ซึ่งเป็นบริการแบบหนึ่งของพาณิชย์อิเล็กทรอนิกส์ (e – commerce) และการรับชำระค่าสินค้า ค่าสาธารณูปโภคผ่านจุดรับชำระแบบออนไลน์ ที่เรีกยว่าเคาน์เตอร์เซอร์วิส (counter service)

การสื่อสารข้อมูล
การสื่อสารข้อมูล จึงหมายถึง การแลกเปลี่ยนข้อมูลข่าวสารซึ่งอาจอยู่ในรูปของตัวอักษร
ตัวเลข รูปภาพ เสียง ระหว่างอุปกรณ์สื่อสาร โดยผ่านทางสื่อกลางในการสื่อสารซึ่งอาจเป็น
สื่อกลางประเภทที่มีสายหรือไร้สายก็ได้
องค์ประกอบหลักของระบบสื่อสารข้อมูลมีอยู่ 5 อย่าง ได้แก่
ข่าวสารหรือข้อมูล(message) คือ ข้อมูลหรือสารสนเทศต่างๆ ที่ต้องส่งไปยัผู้รับ เช่น ตัวเลข รูปภาพ
ผู้ส่ง(sender) คือ คนหรืออุปกรณ์ที่ใช้สำหรับส่งข้อมูล/ข่าวสาร ซึ่งอาจเป็น คอมพิวเตอร์
ผู้รับ (receiver) คือ คนหรืออุปกรณ์ที่ใช้สำหรับรับข้อมูล/ข่าวสารที่ททางผู้ส่งข้อมูลส่งให้
สื่อกลาง (media) คือ สิ่งที่ทำหน้าที่ในการรับส่งข้อมูล/ข่าวสารไปยังจุดหมายปลายทาง
โพรโทคอล (protocol) คือ กฎเกณฑ์ ระเบียบ หรือข้อปฏิบัติต่างๆ ที่กำหนดขึ้นมา
4.3 สื่อกลางในการสื่อสารข้อมูล
การสื่อสารข้อมูลทุกชนิดต้องอาศัยสื่อกลางในการส่งผ่านข้อมูลเพื่อนำข้อมูลไปยังจุดหมายปลายทาง เช่น การคุยโทรศัพท์อาศัยสายโทรศัพท์เป็นสื่อกลางในการส่งสัญญาณคลื่นเสียงไปยังผู้รับ เป็นต้น สำหรับการติดต่อสื่อสารระหว่างงคอมพิวเตอร์อาจใช้สายเชื่อมต่อผ่านอุปกรณ์เชื่อมต่อหรืออาจใช้อุปกรณ์เชื่อมต่อเป็นแบบไร้สายเป็นสื่อกลางในการเชื่อมต่อได้ สื่อกลางในการสื่อสารมีความสำคัญเพราะเป็นปัจจัยหนึ่งที่กำหนดประสิทธิภาพในการสื่อสาร เช่น ความเร็วในการส่งข้อมูล ปริมาณของข้อมูลที่สามารถนำไปได้ในหนึ่งหน่วยเวลา รวมถึงคุณภาพของการส่งข้อมูล
4.3.1 สื่อกลางแบบไร้สาย
1.สายคู่บิดเกลียว(twisted pair cable) สายนำสัญญาณแต่ละคู่สายเป็นสายทองแดงจะถูกพันบิดเป็นเกลียว เพื่อลดการรบกวนของคลื่นแม่เหล็กไฟฟ้าจากคู่สายข้างเคียงกันภายในสายเดียวกันหรือจากภายนอก ทำให้สามารถส่งข้อมูลด้วยความเร็วสูง สายคู่บิดเกลียวสามารถใช้ส่งข้อมูลจำนวนมากเป็นระยะทางไกลได้หลายกิโลเมตร เนื่องจากราคาไม่แพงมาก ใช้ส่งข้อมูลได้ดี น้ำหนักเบา ง่ายต่อการติดตั้ง นิยมใช้อย่างกว้างขวาง สายคู่บิดเกลียวมี 2 ชนิด คือ
-สายคู่บิดเกลียวแบบไม่ป้องกันสัญญาณรบกวน หรือสายยูทีพี (Unshieded Twisted pair :UTP) เป็นสายใช้ในระบบโทรศัพท์ ต่อปรับปรุงคุณสมบัติให้ดีขึ้น จนสามารถใช้กับสัญญาณความถี่สูงได้ ทำให้ส่งข้อมูลได้ด้วยความเร็วสูงขึ้น

รูปที่ 4.12 สายยูทีพี
-สายคู่บิดเกลียวแบบป้องกันสัญญาณรบกวน หรือสายเอสทีพี (Shielded Twisted pair :STP) เป็นสายที่หุ้มด้วยตัวกั้นสัญญาณเพื่อป้องกันการรบกวนได้ดียิ่งขึ้น สายเอสทีพีรองรับความถี่ของการส่งข้อมูลสูงกว่าสายยูทีพี แต่มีราคาแพงกว่า

รูปที่ 4.13 สายเอสทีพี
ในปัจจุบันการติดตั้งสายสัญญาณภายในอาคารนิยมใช้สายยูทีพีเป็นหลัก เพราะมีราคาถูกกว่า สายเอสทีพี และมีการพัฒนามาตรฐานให้มีคุณภาพสูงสามารถส่งข้อมูลความเร็วสูงได้ดีขึ้น
2.สายโคแอกซ์ (coaxial cable) เป็นสายนำสัญญาณที่รู้จักกันดี โดยใช้เป็นสายนำสัญญาณที่ต่อจากเสาอากาศเครื่องรับโทรทัศน์หรือสายเคเบิลทีวี ตัวสายประกอบด้วยลวดทองแดงที่เป็นแกนหลักหนึ่งเส้นหุ้มด้วยฉนวนเพื่อป้องกันกระแสไฟรั่ว จากนั้นจะหุ้มด้วยตัวนำซึ่งทำจากทองแดงถักเป็นร่างแหเพื่อป้องกันการรบกวนของคลื่นแม่เหล็กไฟฟ้าและสัญญาณรบกวนอื่นๆ ก่อนหุ้มชั้นนอกสุดด้วยฉนวนพลาสติก และนิยมใช้เป็นสายนำสัญญาณแอนะล็อกเพื่อเชื่อมต่ออุปกรณ์ภาพและเสียง(audio-vedio decives) ต่างๆ ภายในบ้านและสำนักงาน

รูปที่ 4.14 สายโคแอกซ์
3.สายไฟเบอร์ออพติก (fiber-optic cable) ประกอบด้วยกลุ่มของเส้นใยทำจากแก้วหรือพลาสติกที่มีขนาดเล็กประมาณเส้นผม แต่ละเส้นจะมีแกนกลาง (core) ที่ถูกห่อหุ้มด้วยวัสดุใยแก้วอีกชนิดหนึ่งเรียกว่า แคล็ดดิง (cladding) และหุ้มอีกชั้นด้วยฉนวนเพื่อป้องกันการกระแทกและฉีกขาด

รูปที่ 4.15 สายไฟเบอร์ออพติก
4.3.2 สื่อกลางแบบไร้สาย
การสื่อสารแบบไร้สายอาศัยคลื่นแม่เหล็กไฟฟ้าเป็นสื่อกลางนำสัญญาณ ซึ่งคลื่นแม่เหล็กไฟฟ้าที่สามารถนำมาใช้ในการสื่อสารข้อมูลมีหลายชนิด แบ่งตามช่วงความถี่ที่แตกต่างกัน สื่อกลางของการสื่อสารแบบนี้ เช่น อินฟาเรด(Infared : IR) ไมโครเวฟ(microwave) คลื่นวิทยุ (radio wave)และดาวเทียมสื่อสาร(communicatios satellite)
1.อินฟาเรด สื่อกลางประเภทนี้มักใช้กับการสื่อสารข้อมูลที่ไม่มีสิ่งกีดขวางระหว่างตัวส่งและตัวรับสัญญาณ เช่น การส่งสัญญาณจากรีโมตคอนโทรลไปยังเครื่องรับโทรทัศน์หรือวิทยุ การเชื่อมต่อคอมพิวเตอร์กับคอมพิวเตอร์โดยผ่านพอร์ตไออาร์ดี (The Infared Data Association : IrDA) ซึ่งเป็นการเชื่อมต่อเครือข่ายระยะใกล้

รูปที่4.16 การเชื่อมต่ออุปกรณ์ต่างๆผ่านพอร์ตไออาร์ดีเอ
2.ไมโครเวฟ เป็นสื่อกลางในการสื่อสารทีมีความเร็วสูง ใช้สำหรับการเชื่อมต่อระยะไกลโดยการส่งสัญญาณคลื่นแม่เหล็กไฟฟ้าไปในอากาศพร้อมกับข้อมูลที่ต้องการส่ง และต้องมีสถานีที่ทำหน้าที่ส่งและรับข้อมูล และเนื่องจากสัญญาณไมโครเวฟจะเดินทางเป็นเส้นตรงไม่สามารถเลี้ยวตามความโค้งของผิวโลกได้ จึงต้องมีการตั้งสถานีรับส่งข้อมูลเป็นระยะ และส่งข้อมูลต่อกันระหว่างสถานี จนกว่าจะถึงสถานีปลายทาง และแต่ละสถานีจะตั้งอยู่มนที่สูง เช่น ดาดฟ้า ตึกสูง หรือยอดเขา เพื่อหลีกเลี่ยงการชนสิ่งกีดขวางในแนวการเดินทางของสัญญาณ การส่งข้อมูลผ่านสื่อกลางชนิดนี้เหมาะกับการส่งข้อมูลในพื้นที่ห่างไกลมากๆและไม่สะดวกในการวางสายสัญญาณ ซึ่งเสาสัญญาณแต่ละเสาสามารถวางห่างกันได้ถึง 80 กิโลเมตร ตัวอย่างการส่งสัญญาณไมโครเวฟผ่านพื้นผิวดิน

รูปที่ 4.17 การส่งสัญญาณผ่านไมโครเวฟภาคพื้นดิน
3.คลื่นวิทยุ เป็นสื่อกลางที่ใช้ส่งสัญญาณไปในอากาศ โดยสามารถส่งในระยะได้ทั้งใกล้และไกล โดยมีตัวกระจายสัญญาณ(broadcast) ส่งไปยังตัวรับสัญญาณ และใช้คลื่นวิทยุในช่วงความถี่ต่างๆกันในการส่งข้อมูล เช่น การสื่อสารระยะไกลในการกระจายเสียงวิทยุระบบเอเอ็ม(Amplitude Modulation : AM) และเอฟเอ็ม (Frequency Modulation : FM) หรือการสื่อสารระยะใกล้ โดยใช้ไวไฟ (WI-FI) และบลูทูท (Bluetooth)

รูปที่ 4.18 การสื่อสารระยะใกล้โดยใช้บลูทูท
4.ดาวเทียมสื่อสาร พัฒนาขึ้นมาเพื่อหลีกเลี่ยงข้อจำกัดของสถานีรับส่งไมโครเวฟบนผิวโลกโดยเป็นสถานีรับส่งสัญญาณไมโครเวฟบนอวกาศ ในการส่งสัญญาณต้องมีสถานีภาคพื้นดินคอยทำหน้าที่รับและส่งสัญญาณขึ้นไปบนดาวเทียมที่โคจรอยู่สูงจากพื้นโลกประมาณ 35,600 กิโลเมตร โดยดาวเทียมเหล่านั้นจะเคลื่อนที่ด้วยความเร็วที่เท่ากับการหมุนของโลก จึงเสมือนกับดาวเทียมนั้นอยู่นิ่งกับที่ขณะที่โลกหมุนรอบตัวเอง ทำให้การส่งสัญญาณไมโครเวฟจากสถานีหนึ่งขึ้นไปบนดาวเทียม และการกระจายสัญญาณจากดาวเทียมลงมายังสถานีตามจุดต่างๆบนผิวโลกเป็นไปอย่างแม่นยำ นอกจากนี้ยังมีการใช้งานดาวเทียมในการระบุตำแหน่งบนพื้นโลกเรียกว่า ระบบจีพีเอส โดยบอกพิกัดเส้นรุ้งและเส้นแวงของผู้ใช้งานเพื่อใช้ในการนำทาง

รูปที่ 4.19 การสื่อสารผ่านดาวเทียมและจีพีเอส
4.4 เครือข่ายคอมพิวเตอร์
เครือข่ายคอมพิวเตอร์ (computer network) เป็นการเชื่อมต่อคอมพิวเตอร์และอุปกรณ์ต่อพ่วงเข้าด้วยกันเพื่อให้สามารถใช้ข้อมูลและทัรพยากรร่วมกันได้ เช่น สามารถใช้เครื่องพิมพ์ร่วมกันได้ สามารถใช้ฮาร์ดิสก์ร่วมกันได้ แบ่งปันอุปกรณ์อื่นๆที่มีราคาแพง แม้กระทั่งสามารถใช้โปรแกรมร่วมกันได้ เป็นการลดต้นทุนขององค์กร
เครือข่ายคอมพิวเตอร์สามารถแบ่งออกเป็นประเภทตามพื้นที่ที่ครอบคลุมการใช้งานของเครือข่าย ดังนี้
1. เครือข่ายส่วนบุคคล (Personal Area Network :PAN) เป็นเครือข่ายที่ใช้ส่วนบุคคล เช่นการเชื่อมต่อคอมพิวเตอร์กับโทรศัพท์มือถือ การเชื่อมต่อพีดีเอกับเครื่องคอมพิวเตอร์ ซึ่งการเชื่อมต่อแบบนี้จะอยู่ระยะใกล้ และมีการเชื่อต่อแบบไร้สาย

รูปที่ 4.20 เครือข่ายส่วนบุคคล
2.เครือข่ายเฉพาะที่ หรือแลน ( Local Area Network :LAN) เครือข่ายที่ใช้เชื่อมโยงคอมพิวเตอร์และอุปกรณ์ต่างๆที่อยู่ในพื้นที่เดียวกันหรือใกล้เคียงกัน เช่น ภายในบ้าน ภายในสำนักงานและภายในอาคาร สำหรับการใช้งานภายในบ้านนั้น อาจเรียกเครือข่ายประเภทนี้ว่าเครือข่ายที่พักอาศัย(home network) ซึ่งอาจเชื่อมต่อแบบใช้สายหรือไร้สาย

รูปที่ 4.21 เครือข่ายเฉพาะที่ หรือแลน
3. เครือข่ายนครหลวง หรือแมน(Metropolitan Area Network :MAN) เครือข่ายที่ใช้เชื่อมโยงแลนที่อยู่ห่างไกลออกไป เช่น การเชื่อมต่อเครือข่ายระหว่างสำนักงานที่อาจอยู่คนละอาคารและมีระยะทางไกลกัน การเชื่อมต่อชนิดนี้อาจใช้สายไฟเบอร์ออพติก หรือบางครั้งอาจใช้ไมโครเวฟเชื่อมต่อ เครือข่ายแบบนี้ที่ใช้ในสถานศึกษามีชื่อเรียกอีกอย่างหนึ่งว่า เครือข่ายแคมปัส (Campus Area Network :CAN)

รูปที่ 4.22 เครือข่ายนครหลวง หรือแมน
4. เครือข่ายวงกว้าง หรือแวน (Wide Area Network :WAN) เครือข่ายที่ใช้ในการเชื่อมโยงกับเครือข่ายอื่นที่อยุ่ไกลจากกันมาก เช่น เครือข่ายระหว่างจังหวัด หรือระหว่างภาค รวมไปถึงเครือข่ายระหว่างประเทศ


รูปที่ 4.23 เครือข่ายวงกว้าง หรือแวน
4.4.1 ลักษณะของเครือข่าย ในการใช้งานเครือข่ายคอมพิวเตอร์เพื่อใช้ทรัพยากรร่วมกัน สามารถแบ่งลักษณะของเครือข่ายตามบทบาทของเครื่องคอมพิวเตอร์ในการสื่อสารได้ดังนี้1.เครือข่ายแบบรับ-ให้บริการ หรือไคลเอนท์/เซิร์ฟเวอร์ (Client-Server Network ) จะมีเครื่องคอมพิวเตอร์ ที่เป็นเครื่องให้บริการต่าง ๆเช่น บริการเว็บ และบริการฐานข้อมูล การให้บริการขึ้นอยู่กับการร้องขอบริการจากเครื่องรับบริการ เช่น การเปิดเว็บเพจ เครื่องรับบริการจะร้องขอบริการไปที่เครื่องให้บริการเว็บ จากนั้นเครื่องให้บริการเว็บจะตอบรับและส่งข้อมูลกลับมาให้เครื่องรับบริการ ข้อดีคือ สามารถให้บริการแก่เครื่องรับบริการได้เป็นจำนวนมาก ข้อด้อยคือมีค่าใช้จ่ายในการติดตั้งและบำรุงรักษาค่อนข้างสูง

รูปที่ 4.24 ไคลเอนท์/เซิร์ฟเวอร์
2.เครือข่ายระดับเดียวกัน (Peer-to-Peer Network : P2P network)เครื่องคอมพิวเตอร์สามารถเป็นได้ทั้งเครื่องให้บริการและเครื่องรับบริการ.การใช้งานส่วนใหญ่มักใช้ในการแบ่งปันข้อมูล เช่น เพลง ภาพยนตร์ โปรแกรม และเกม เครือข่ายแบบนี้เริ่มแพร่หลายมากขึ้นในผู้ใช้อินเทอร์เน็ต การใช้งานจะมีซอฟต์แวร์เฉพาะ เช่น โปรแกรม eDonkey , BitTorrentและ LimeWire ข้อดีคือง่ายต่อการใช้งานและราคาไม่แพง ข้อด้อยคือไม่มีการควบคุมเรื่องความปลอดภัยจึงอาจพบว่านำไปใช้ในทางไม่ถูกต้อง เช่น การแบ่งปันเพลง ภาพยนตร์และโปรแกรมที่มีลิขสิทธิ์ซึ่งเป็นการกระทำผิดกฎหมาย

รูปที่ 4.25 เครือข่ายระดับเดียวกัน
4.2.2 รูปร่างเครือข่าย การเชื่อมต่อคอมพิวเตอร์หรืออุปกรณ์รับส่งข้อมูลที่ประกอบกันเป็นเครือข่ายมีการเชื่อมโยงถึงกันในรูปแบบต่างๆ ตามลักษณะทางกายภาพที่เรียกว่ารูปร่างเครือข่าย (network topology) แบ่งตามลักษณะของการเชื่อมต่อได้ 4 รูปแบบคือ
1. เครือข่ายแบบบัส (bus topology)
เป็นรูปแบบที่มีสถานีทุกสถานีในเครือข่ายจะเชื่อมต่อเข้ากับสายสื่อสารหลักเพียงสายเดียวที่เรียกว่า บัส (bus) การจัดส่งข้อมูลลงบนบัสจึงไปทุกสถานีได้ ซึ่งวิธีการจัดส่งต้องกำหนดวิธีการที่จะไม่ให้ทุกสถานีส่งข้อมูลพร้อมกันเพราะจะทำให้เกิดการชนกัน (collision) ของข้อมูล โดยวิธีการที่ใช้อาจเป็นการแบ่งช่วงเวลาหรือให้แต่ละสถานีใช้คลื่นความถี่ในการส่งสัญญาณที่แตกต่างกัน เครือข่ายแบบบัสไม่ได้รับความนิยมในปัจจุบัน เนื่องจากความเสียหายที่เกิดขึ้นกับบัสเพียงจุดเดียวจะส่งผลให้ทุกอุปกรณ์ไม่สามารถสื่อสารถึงกันได้

รูปที่ 4.26 เครือข่ายแบบบัส
2. เครือข่ายแบบวงแหวน (ring topology)
เป็นการเชื่อมต่อแต่ละละสถานีมีลักษณะเป็นวงแหวน สัญญาณข้อมูลจะส่งอยู่ในวงแหวนไปในทิศทางเดียวกันจนถึงผู้รับ หากข้อมูลที่ส่งเป๋นของสถานีใด สถานีนั้นก็รับไว้ ถ้าไม่ใช่ก็ส่งต่อไป ซึ่งระบบเครือข่ายแบบวงแหวนนี้ สามารถรองรับจำนวนสถานีได้เป็นจำนวนมาก ข้อด้อยคือ สถานีจะต้องรอจนถึงรอบของตนเองก่อนที่จะสมารถส่งขอ้มูลได้

รูปที่ 4.27 เครือข่ายแบบวงแหวน
3. เครือข่าย แบบดาว (star topology)
เป็นการเชื่อมต่อสถานีในเครือข่ายโดยทุกสถานีจะต่อเข้ากับหน่วยสลับสายกลาง เช่น ฮับ(hub) หรือสวิตซ์ (switch) ซึ่งทำหน้าที่เป็นศูนย์กลางของการเชื่อมต่อระหว่างสถานีต่างๆที่ต้องการติดต่อกัน ข้อดีคือถ้าสถานีใดเสียหรือสายเชื่อมต่อระหว่างฮับ/สวิตซ์ชำรุดจะไม่กระทบต่อการเชื่อมต่อของสถานีอื่น ดังนั้นการเชื่อมต่อแบบนี้จึงเป็นที่นิยมในปัจจุบัน

รูปที่ 4.28 เครือข่าย แบบดาว
4. เครือข่ายแบบเมช (mesh topology)
เป็นรูปแบบการเชื่อมต่อที่มีความนิยมมากและมีประสิทธิภาพสูงเนื่องจากถ้ามีเส้นทางการเชื่อมต่อคู่ใดคู่หนึ่งขาดจากกัน การติดต่อสื่อสารระหว่าคู่นั้นยังสามารถติดต่อได้โดยอุปกรณ์จักฃดเส้นทาง(router) จะทำการเชื่อมต่อเส้นทางใหม่ไปยังจุดหมายปลายทางอัตโนมัติ การเชื่อมต่อแบบนี้นิยมสร้างบนเครือข่ายแบบไร้สาย
รูปที่ 4.29 เครือข่ายแบบเมช
4.5 โพรโทคอล
การเชื่อต่อระหว่างคอมพิวเตอร์ และอุปกรณ์เครือข่ายที่ผลิตจากผู้ผลิตหลายรายผ่านทางระบบเครือข่ายชนิดต่างๆ กัน ไม่สามารถเชื่อมต่อโดยตรงกันได้ เช่น การติดต่อสื่อสารระหว่างเมนเฟรมของบริษัทไอบีเอ็ม (IBM mainframe) ไม่สามารถติดต่อสื่อสารกันได้โดยตรงกับเครื่องแมคอินทอชของบริษัทแอปเปิล (Apple Macintosh) ดังนั้นต้องมีการเปลี่ยนรูปแบบของข้อมูลที่ส่งและกำหนดมาตรฐานทั้งทางด้านฮาร์ดแวร์และซอฟต์แวร์เพื่อให้อุปกรณ์สามารถติดต่อสื่อสารกันได้ โดยมีองค์กรกลาง เช่น IEEE, ISO และ ANSI เป็นผู้กำหนดมาตรฐานขึ้นมา
ปัจจุบันเครื่องคอมพิวเตอร์และอุปกรณ์จากต่างผู้ผลิต สามารถเชื่อมต่อถึงกันได้ภายใต้มาตรฐานเครือข่ายเดียวกัน

รูปที่ 4.30 ตัวอย่างการใช้โพรโทคอลเป็นข้อตกลงในการสื่อสาร
กฎกติกาหรือข้อตกลงที่ใช้เป็นมาตรฐานในการสื่อสารข้อมูลระหว่างผู้รับและผู้ส่ง เรียกว่าโพลโทคอล (protocol) ซึ่งเป็นข้อกำหนดที่ใช้ควบคุมการสื่อสารข้อมูลในเครือข่าย ไม่ว่าจะเป็นวิธีการในการรับส่งข้อมูล รูปแบบของการรับส่ง อุปกรณ์หรือสื่อกลางในการรับส่งข้อมูล วิธีการตรวจสอบความผิดพลาดของข้อมูล รวมถึงความเร็วในการรับส่งข้อมูล เครื่องคอมพิวเตอร์หรืออุปกรณ์เครือข่ายที่ใช้โพลโทคอลชนิดเดียวกันกับการสื่อสารของมนุษย์ที่ต้องใช้ภาษาเดียวกันจึงสามารถสื่อสารกันได้เข้าใจ ตัวอย่างการใช้โพลโทคอลเป็นข้อตกลงในการสื่อสาร ดังรูปที่ 4.30
โพรโทคอลของการสื่อสารระหว่างสองบริษัทที่อยู่คนละประเทศ จากรูปที่ 4.30 ประธานบริษัทซึ่งพูดคุยคนละภาษา สามารถสื่อสารกันทางไกลโดยการส่งข้อความผ่านล่ามของตนเอง โดยล่ามทำการแปลข้อความที่ประธานบริษัทต้องการส่งถึงกัน หลังจากนั้นล่ามจะนำข้อความไปให้เลขาของบริษัททำการจัดส่งให้กับอีกฝ่ายหนึ่ง โดยใช้บริการของเครือข่ายคอมพิวเตอร์ ซึ่งจะเห็นว่าการสื่อสารทางไกลชีวิตจริงก็มีการแบ่งระดับชั้นของหน้าที่ในการสื่อสารข้อมูล เพื่อให้เกิดความสะดวก และคล่องตัวในการสื่อสาร
สำหรับโพลโทคอลที่ใช้เป็นมาตรฐานในการสื่อสารแบบใช้สาย และแบบไร้สาย ที่ใช้กันอย่างแพร่หลาย เช่น
ทีซีพี/ไอพี (Transmission Control Protocol / Internet Protocol: TCP/IP) เป็นโพรโทคอลที่ใช้ในการสื่อสารในระบบอินเทอร์เน็ต โดยมีการระบุผู้รับผู้ส่งในเครือข่ายและจัดการแบ่งข้อมูลเป็นชิ้นเล็กๆ ที่เรียกว่าแพ็คเก็ต (packet) ส่งผ่านไปในอินเทอร์เน็ต ดังรูปที่ 4.31 และมั่นใจได้ว่าข้อมูลที่ส่งไปนั้น จะได้รับอย่างถูกต้องและครบถ้วน ในการณีที่ข้อมูลเกิดผิดพลาดระหว่างทาง จะมีการร้องขอเพื่อส่งข้อมูลใหม่ให้

รูปที่ 4.31 ตัวอย่างการส่งข้อมูลโดใช้โพรโทคอลทีซีพี/ไอพี
ไวไฟ (Wireless Fidelity: WiFi) มักถูกนำไปอ้างถึงเทคโนโลยีเครือข่ายแบบไร้สาย ตามมาตรฐาน IEEE 802.11 ซึ่งใช้คลื่นวิทยุความถี่ 2.4 GHz เป็นสื่อกลางในการติดต่อสื่อสาร ไวไฟเกิดขึ้นจากการรวมกลุ่มกันของผู้ผลิตอุปกรณ์ เพื่อทดสอบว่าอุปกรณ์ที่ผลิตขึ้นทำงานได้ตามมาตรฐานของ IEEE 802.11 โดยเครื่องคอมพิวเตอร์และอุปกรณ์ที่ได้รับการรับรองจากไวไฟ จะสามารถติดต่อสื่อสารถึงกันได้ ดังรูปที่ 4.32

รูปที่ 4.32 อุปกรณ์ที่เชื่อมต่อถึงกันด้วยมาตรฐานไวไฟ
ผู้ใช้งานในบ้านหรือสำนักงานขนาดเล็ก ส่วนใหญ่นิยมใช้ไวไฟการติดตั้งระบบแลนไร้สาย (wireless LAN) โดยมีการติดตั้งแผงวงจรหรืออุปกรณ์รับส่งไวไฟที่เรียกว่า การ์ดแลนไร้สาย (wireless LAN card) ซึ่งปัจจุบันเครื่องคอมพิวเตอร์โน้ตบุ๊กจะมีตัวรับส่งสัญญาณไวไฟเป็นอุปกรณ์มาตรฐานแล้ว สำหรับรัศมีการใช้งานของแลนไร้สายขึ้นอยู่กับความสามารถในการรับส่งสัญญาณของอุปกรณ์ ซึ่งโดยทั่วไปจะอยู่ห่างจากจุดเชื่อมต่อแบบไร้สาย (wiles access point) ไม่เกิน 100 เมตร สำหรับการใช้งานภายในอาคาร และไม่เกิน 500 เมตรสำหรับการใช้งานที่โล่งนอกอาคาร แต่ในการใช้งานจริง อาจมีปัจจัยอื่นที่ส่งผลให้รัศมีการใช้งานสั้นลง เช่น ผนังอาคาร หรือตำแหน่งจุดเชื่อมต่อแบบไร้สายที่อยู่ในมุมอับ ตัวอย่างระบบแลนไร้สาย ดังรูปที่ 4.33
รูปที่ 4.33 ตัวอย่างระบบแลนไร้สาย
ระบบแลนไร้สายมีข้อดีคือทำให้ผู้ใช้งานมีอิสระในการเคลื่อนย้ายเครื่องคอมพิวเตอร์ไปทำงาน ในที่ต่างๆ ได้สะดวก อย่างไรก็ตามการใช้งานระบบเครือข่ายไร้สายมีข้อควรระวังในเรื่องของความปลอดภัยของข้อมูล เนื่องจากสัญญาณที่ส่งในแบบไร้สายสามารถถูกดักรับได้โดยง่าย ดังนั้นมาตรฐาน IEEE 802.11 จึงได้กำหนดให้อุปกรณ์ที่ใช้ในระบบแลนไร้สายต้องให้ผู้ใช้เลือกได้ว่าจะเข้ารหัสข้อมูลที่ส่งหรือไม่
ไออาร์ดีเอ (Infrared Data Association: Irda) เป็นโพรโทคอลใช้เชื่อมต่อคอมพิวเตอร์กับอุปกรณ์สื่อสารแบบไร้สายระยะใกล้ และไม่มีสิ่งกีดขวาง โดยใช้แสงอินฟาเรดในการติดต่อสื่อสารและมีความเร็วในการส่งข้อมูลอยู่ระหว่าง 115 kbps ถึง 4 Mbps ผ่านพอร์ตไออาร์ดีเอ นิยมใช้โพรโทคอลนี้ในระบบเครือข่ายส่วนบุคคลแบบไร้สายหรือแพนไร้สาย (wireless PAN) ตัวอย่างระบบแพนไร้สาย โดยใช้ไออาร์ดีเอ ดังรูปที่ 4.34

รูปที่ 4.34 ระบบแพนไร้สายโดยใช้ไออาร์ดีเอ
บลูทูท (Bluetooth) เป็นโพรโทคอลที่ใช้คลื่นวิทยุความถี่ 2.41 GHz ในการรับส่งข้อมูลโดยคล้ายกับแลนไร้สาย ตามมาตรฐาน IEEE 802.15 มีวัตถุประสงค์เพื่อให้ผู้ใช้งานคอมพิวเตอร์สามารถติดต่อสื่อสารกับอุปกรณ์ต่อพ่วงไร้สายอื่นๆ เช่น เครื่องพิมพ์ เมาส์ คีย์บอร์ด พีดีเอ โทรศัพท์ เคลื่อนที่ และหูฟัง เข้าด้วยกันได้โดยสะดวก โดยมาตรฐานบลูทูทสามารถส่งข้อมูลได้ที่ความเร็วมากกว่า 3Mbps
อุปกรณ์ต่างๆ ที่รองรับการทำงานแบบบลูทูท จะต้องถูกตั้งค่าใช้งานของระบบ โดยจะมีการจับคู่ระหว่างอุปกรณ์ที่ติดต่อกันก่อน เมื่อเข้าใกล้กันภายในรัศมีของการสื่อสารประมาณ 10 เมตร จะสามารถตรวจสอบพบอุปกรณ์อื่นที่เคยจับคู่ไว้แล้วได้ เกิดเป็นระบบแพนไร้สาย ทำให้การรับส่งระหว่างกันทำได้โดยง่าย ในการใช้งานบลูทูทจะมีอุปกรณ์ตัวหนึ่งทำหน้าที่เป็นอุปกรณ์หลัก และอุปกรณ์ที่เหลือเป็นอุปกรณ์รอง ซึ่งอุปกรณ์หลักจะทำหน้าที่ควบคุมการส่งข้อมูลของอุปกรณ์รองตัวอื่นๆ ทั้งหมด ตัวอย่างระบบแพนไร้สายโดยใช้บลูทูท ดังรูปที่ 4.35
รูปที่ 4.35 ตัวอย่างระบบแพนไร้สายโดยใช้บลูทู
4.6 อุปกรณ์การสื่อสาร
อุปกรณ์การสื่อสาร (communication devices) ทำหน้าที่รับและส่งข้อมูลจากอุปกรณ์ส่งและรับข้อมูล โดยมีการส่งผ่านทางสื่อกลางดังที่กล่าวมาแล้ว สัญญาณที่ส่งออกไปอาจอยู่ในรูปแบบดิจิทัล หรือแบบแอนะล็อก ขึ้นอยู่กับอุปกรณ์ที่ใช้ในการติดต่อสื่อสารกับสื่อกลางที่ใช้ในการเชื่อมต่อ
การเชื่อมต่อคอมพิวเตอร์เข้ากับเครือข่ายมีหลายแบบด้วยกัน เช่น การต่อผ่านโทรศัพท์บ้าน การต่อผ่านเคเบิลทีวี การเชื่อมต่อเครือข่ายแบบใช้สายและไร้สาย ซึ่งจำเป็นต้องมีอุปกรณ์สนับสนุนในการเชื่อมต่อในแต่ละแบบ อุปกรณ์การสื่อสารประเภทต่างๆ ที่มีใช้กันอยู่ในปัจจุบัน เช่น
1) โมเด็ม (modem) เป็นอุปกรณ์ที่แปลงสัญญาณดิจิทัลเป็นสัญญาณแอนะล็อก และแปลงสัญญาณแอนะล็อกเป็นดิจิทัลเพื่อให้ข้อมูลส่งผ่านทางสายโทรศัพท์ได้ โมเด็มมีหลายประเภทแบ่งตามลักษณะการใช้งานได้ดังนี้
1.1) โมเด็มแบบหมุนโทรศัพท์ (dial-up modem) เป็นโมเด็มที่ใช้ต่อเข้ากับผู้ให้บริการอินเทอร์เน็ตผ่านทางสายโทรศัพท์ การเชื่อมต่อใช้วิธีการหมุนโทรศัพท์ติดต่อไปยังผู้ให้บริการอินเทอร์เน็ต ความเร็วในการส่งผ่านข้อมูลต่ำประมาณ 56 kbps ระบบการเชื่อมต่ออินเทอร์เน็ตผ่านโมเด็มแบบหมุนโทรศัพท์ ดังรูปที่ 4.36
รูปที่ 4.36 ระบบการเชื่อมต่ออินเทอร์เน็ตผ่านโมเด็มแบบหมุนโทรศัพท์
1.2) ดิจิทัลโมเด็ม (digital modem) เป็นโมเด็มที่ใช้รับและส่งข้อมูลผ่านสายเชื่อมสัญญาณแบบดิจิทัล การเชื่อมต่อโมเด็มแบบนี้ผู้ใช้ไม่จำเป็นต้องหมุนโทรศัพท์ไปที่ผู้ให้บริการอินเทอร์เน็ต โดยโมเด็มจะทำการเชื่อมต่อให้อัตโนมัติเมื่อมีการใช้งาน สามารถส่งข้อมูลด้วยความเร็วสูงตั้งแต่ 128 kbps ขึ้นไป โดยทั่วไปจะเป็นโมเด็มที่ติดตั้งภายนอก (external modem) โมเด็มแบบนี้ เช่นดีเอสแอล (Digital Subscriber Line: DSL) เป็นโมเด็มที่ได้รับความนิยมในการใช้งานในบ้าน และสำนักงานขนาดเล็ก โดยสามารถรับและส่งข้อมูลดิจิทัลด้วยความเร็วสูงกว่าการเชื่อมต่อผ่านโมเด็มแบบหมุนโทรศัพท์ ตัวอย่างการติดตั้งดีเอสแอลโมเด็ม ดังรูปที่ 4.37
รูปที่ 4.37 ตัวอย่างการติดตั้งดีเอสแอลโมเด็ม
เคเบิลโมเด็ม (cable modem) เป็นโมเด็มทำหน้าที่รับและส่งข้อมูลดิจิทัลจาอคอมพิวเตอร์ผ่านทางสายเคเบิลทีวี บางครั้งเรียกว่าบรอดแบนด์ (broadband modem) สามารถรับและส่งข้อมูลได้สูงเหมือนกับดีเอสแอลโมเด็ม ตัวอย่างการติดตั้งเคเบิลโมเด็ม ดังรูปที่ 4.38

รูปที่ 4.38 ตัวอย่างการติดตั้งเคเบิ้ลโมเด็ม
2) การ์ดแลน (Lan card) เป็นอุปกรณ์ที่เชื่อมระหว่างคอมพิวเตอร์กับสายตำนำสัญญาณทำให้คอมพิวเตอร์สามารถรับและส่งข้อมูลกับระบบเครือข่ายได้ ในอดีตเป็นอุปกรณ์เสริมที่ใช้ต่อเพิ่มเข้ากับเมนบอร์ดของเครื่องคอมพิวเตอร์ แต่ในปัจจุบันมักจะถูกประกอบรวมไปในเมนบอร์ด เนื่องจากความต้องการเชื่อมต่เข้ากับเครือข่ายกลายเป็นความจำเป็นพื้นฐานของผู้ใช้คอมพิวเตอร์ไปแล้วนั่นเอง ตัวอย่างการ์ดแลนชนิดต่างๆ ดังรูปที่ 4.39

รูปที่ 4.39 การ์ดแลนชนิดต่างๆ
3) ฮับ (hub) เป็นอุปกรณ์ที่รวมสัญญาณที่มาจากอุปกรณ์รับส่งหรือเครื่องคอมพิวเตอร์ หลายๆ เครื่องเข้าด้วยกัน ข้อมูลที่รับส่งผ่านฮับจากเครื่องหนึ่งจะกระจายไปยังทุกสถานีที่ต่ออยู่บนฮับนั้น ดังนั้นทุกสถานีจะรับสัญญาณข้อมูลที่กระจายมาได้ทั้งหมด แต่จะเลือกคัดลอกเฉพาะข้อมูลที่ส่งมาถึงตนเท่ากัน ตัวอย่างการเชื่อมต่อคอมพิวเตอร์ด้วยฮับ ดังรูปที่ 4.40
รูปที่ 4.40 การเชื่อมต่อคอมพิวเตอร์เข้ากับฮับ
4) สวิตซ์ (switch) เป็นอุปกรณ์รวมสัญญาณที่มาจากอุปกรณ์รับส่งหรือคอมพิวเตอร์หลายเครื่องเช่นเดียวกับฮับ แต่มีข้อแตกต่างจากฮับ กล่าวคือ การรับส่งข้อมูลจากอุปกรณ์ตัวหนึ่ง จะไม่กระจายไปยังทุกจุดเหมือนฮับ ทั้งนี้เพราะสวิตซ์จะรับกลุ่มข้อมูลมาตรวจสอบก่อนว่าเป็นของคอมพิวเตอร์หรืออุปกรณ์ใด แล้วนำข้อมูลนั้นส่งต่อไปยังคอมพิวเตอร์หรืออุปกรณ์เป้าหมายให้อย่างอัตโนมัติ สวิตซ์จะลดปัญหาการชนกันของข้อมูลเพราะไม่ต้องกระจายข้อมูลไปทุกสถานีที่เชื่อมต่ออยู่กับสวิตซ์ และยังมีข้อดีในเรื่องการป้องกันการดักรับข้อมูลที่กระจายไปในเครือข่าย ตัวอย่างการเชื่อมต่อคอมพิวเตอร์ด้วนสวิตซ์ ดังรูปที่ 4.41
รูปที่ 4.41 การเชื่อมต่อคอมพิวเตอร์ด้วยสวิตซ์
5) อุปกรณ์จัดเส้นทาง ( router ) เป็นอุปกรณ์ที่ใช้งานในการเชื่อมโยงเครือข่ายหลายเครือข่ายเข้าด้วยกัน หรือเชื่อมโยงอุปกรณ์หลายอย่างเข้าด้วยกัน ดังนั้นจึงมีเส้นทางการเข้าออกของข้อมูลได้หลายเส้นทาง อุปกรณ์จัดเส้นทางจะหาเส้นทางที่เหมาะสมให้ เพื่อนำส่งข้อมูลผ่านเครือข่ายต่างๆ ไปยังอุปกรณ์ปลายทางตามที่ระบุไว้ ตัวอย่างการเชื่อมต่อคอมพิวเตอร์ด้วยอุปกรณ์จัดเส้นทาง ดังรูปที่ 4.42
รูปที่ 4.42 การเชื่อมต่อคอมพิวเตอร์ด้วยอุปกรณ์จัดเส้นทาง
6) จุดเชื่อมต่อแบบไร้สาย (wireless access point) ทำหน้าที่คล้ายกับฮับของเครือข่ายแบบใช้สายเพื่อใช้สำหรับติดต่อสื่อสารระหว่างอุปกรณ์แบบไร้สาย ซึ่งข้อมูลจะถูกส่งผ่านทางคลื่นวิทยุความถี่สูง โดยจะต้องใช้งานร่วมกับการ์ดแลนไร้สายที่ติดตั้งอยู่กับคอมพิวเตอร์ หรืออุปกรณ์ เช่น เครื่องพิมพ์ เป็นต้น ตัวอย่างการใช้งานจุดเชื่อมต่อแบบไร้สาย ดังรูปที่ 4.43
รูปที่ 4.43 การใช้งานจุดเชื่อมต่อแบบไร้สาย
4.7 ตัวอย่างการติดตั้งแลนภายในบ้าน
การติดตั้งแลนภายในบ้านอย่างง่าย สามารถทำได้โดยเชื่อมต่อคอมพิวเตอร์อย่างน้อยสองเครื่องเข้าด้วยกันโดยผ่านสวิตซ์ และทำการปรับตั้งค่าของโพลโทคอลการสื่อสารที่เกี่ยวข้อง เช่น ที่อยู่ไอพีของคอมพิวเตอร์แต่ละเครื่อง จะทำให้คอมพิวเตอร์สามารถสื่อสารข้อมูลกันได้ และถ้าต้องการเชื่อมต่อแลนดังกล่าวเข้ากับอินเตอร์เน็ต จะต้องทำการเชื่อมต่อสวิตซ์เข้ากับอุปกรณ์จัดเส้นทาง จากนั้นผู้ใช้งานจะสามารถเชื่อมต่ออุปกรณ์จัดเส้นทางเข้ากับอินเทอร์เน็ตได้โดยขอใช้บริการจากผู้ให้บริการอินเทอร์เน็ต
รูปที่ 4.44 ตัวอย่างการเชื่อมต่อระบบเครือข่ายภายในบ้านเข้ากับอินเทอร์เน็ต
รูปที่ 4.44 แสดงตัวอย่างระบบเครือข่ายในบ้านที่ประกอบไปด้วยอุปกรณ์รับสัญญาณและเชื่อมต่อกับผู้ให้บริการอินเทอร์เน็ตแบบดีเอสแอล ชนิดดีเอสแอลโมเด็ม (Asymmetric Digital Subscriber line: ADSL modem) จากนั้นผู้ใช้สามารถเชื่อมต่ออุปกรณ์จัดเส้นทางและสวิตซ์เพื่อขยายและเพิ่มจำนวนเครื่องคอมพิวเตอร์และอุปกรณ์ที่จะต่อพ่วงภายในบ้านหรือสำนักงานได้เอง และเนื่องจากความก้าวหน้าทางด้านเทคโนโลยีการสื่อสาร ทำให้ในปัจจุบันได้มีการรวมเอาอุปกรณ์จัดเส้นทาง เอดีเอสแอล